CSE120
Principles of Operating Systems

rof Yuanyuan (YY) Zhou
aging

Review
c

e Fixed and variable size partition

- Simple to implement (base and limit registers)

— Internal vs. external fragmentation

— Best, worst, fast fit

— Bitmap vs. link-list implementation of free memory regions
e Paging

- Page size is a power of 2

- Virtual page number - physical page frame

-~ How to calculate VPN from virtual address?

- How to get physical address?

e Segmentation
- Segmentation table

e Hybrid: paging+segmentation
y p g g g10/31/18 CSE 120 —Paging

Today’s Lecture
.

Today we’ll cover more paging mechanisms:
e Optimizations

- Managing page tables (space)

- Efficient translations (TLBs) (time)

- Demand paged virtual memory (space)

e Recap address translation

10/31/18 CSE 120 —Paging

Page Mapping Hardware

Virtual Address (P,D)

Page Table

Physical Memory

Physical Address (F,D) F

1D

10/31/18 CSE 120 —Paging

Virtual Address (004006)

Page Table 004

"+ 006

Physical Memory

Physical Address (F,D) 005
Page size 0x1000 !
Number of Possible Virtual Pages 0x1000 1006

Number of Page Frames 8

10/31/18 CSE 120 —Paging

Paging Issues
-

e Page size is 2"
— usually 512, 1k, 2k, 4k, or 8k
- E.g. 32 bit VM address may have 2%° (1MB) pages
with 4k (212) bytes per page
e Page table:
- 2?0 page entries take 222 bytes (4MB)

10/31/18 CSE 120 —Paging

Managing Page Tables

e The page table for a 32-bit address space w/ 4K
pages to be 4MB
- This is far too much overhead for each process

e How can we reduce this overhead?

— Observation: Only need to map the portion of the address
space actually being used (tiny fraction of entire addr
space)

10/31/18 CSE 120 —Paging

Question?
-

How to reduce page table size if the virtual
pages are sparse”?

10/31/18 CSE 120 —Paging

Two-Level Page Tables

e Two-level page tables

Virtual addresses (VAs) have three parts:
e Directory, secondary page number, and offset

Directory maps VAs to secondary page table
Secondary page table maps page number to physical page
Offset indicates where in physical page address is located

e Example

4K pages, 4 bytes/PTE
How many bits in offset? 4K = 12 bits

Want master page table in one page: 4K/4 bytes = 1K
entries

Hence, 1024 secondary page tables. How many bits?

Master (1K) = 10, offset = 12, secondary =32 -10-12 =
10 bits

10/31/18 CSE 120 —Paging

Two-Level Page Tables

Physical Memory

Virtual Address
Directory

2"d-level Page No Offset

Physical Address

Page table Page frame Offset

First level Page
Table

Page frame

Second level Page Table

10/31/18 CSE 120 —Paging

Youtube Video

e https://www.youtube.com/watch?v=Z4kSOv4
9GNc

10/31/18 CSE 120 —Paging

S0 what is the problem with two-
level page table?

e Hints:
- Programs only know virtual addresses

- Each virtual address must be translated

e So, each program memory access requires several
actual memory accesses

10/31/18 CSE 120 —Paging

Efficient Translations
«{«a

e QOur original page table scheme already doubled the
cost of doing memory lookups

- One lookup into the page table, another to fetch the data
e Now two-level page tables triple the cost!

- Two lookups into the page tables, a third to fetch the data
- And this assumes the page table is in memory

e How can we use paging but also have lookups cost
about the same as fetching from memory?
— Cache translations in hardware
— Translation Lookaside Buffer (TLB)
- TLB managed by Memory Management Unit (MMU)

10/31/18 CSE 120 —Paging

Translation Look-aside Buffer
(TLB)
o

Virtual address

VPage # offset
e — \
| VPage# | PPage#| ... :
:> VPage# |PPage#| ... |, | MIiss
I : !
| : '
:: VPage# IPPage#I :
age
\ TLB ' b
N e e e e == d table
Hit|
PPage # offset
Physical address

10/31/18 CSE 120 —Paging

TLBs
«{«a__

e Translation Lookaside Buffers
- Translate virtual page #s into PTEs (not physical addrs)
-~ Can be done in a single machine cycle

e TLBs implemented in hardware
- Fully associative cache (all entries looked up in parallel)
-~ Cache tags are virtual page numbers
— Cache values are PTEs (entries from page tables)
- With PTE + offset, can directly calculate physical address

e TLBs exploit locality

— Processes only use a handful of pages at a time

e 16-48 entries/pages (64-192K)
e Only need those pages to be “mapped”

— Hit rates are therefore very important

10/31/18 CSE 120 —Paging

TLB Function
«_

e If a virtual address is presented to MMU, the

hardware checks TLB by comparing all
entries simultaneously (in parallel).

e If match is valid, the page is taken from TLB
without going through page table.

e If match is not valid
- MMU detects miss and does an ordinary page
table lookup.

- It then evicts one page out of TLB and replaces it
with the new entry, so that next time that page is
found in TLB.

10/31/18 CSE 120 —Paging

Page Mapping Hardware

Virtual Memory Address (P,D)

e Table

Physical Address (F,D)

10/31/18 CSE 120 —Paging

age Mapping Example

Virtual Memory Address (P,D)

e Table

Table organized by
LRU

Physical Address (F,D)

10/31/18 CSE 120 —Paging

Mapping Example: next reference

Virtual Memory Address (P,D)

Page Table

Table organized by
LRU

Physical Address (F,D)

10/31/18 CSE 120 —Paging

Youtube video

e https://www.youtube.com/watch?v=95QpHJX
55bM

10/31/18 CSE 120 —Paging

Managing TLBs
-

e Address translations for most instructions are handled
using the TLB

— >99% of translations, but there are misses (TLB miss)...

e \Who places translations into the TLB (loads the TLB)?

- Hardware (Memory Management Unit) [x86]
e Knows where page tables are in main memory
e OS maintains tables, HW accesses them directly
e Tables have to be in HW-defined format (inflexible)

- Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]
e TLB faults to the OS, OS finds appropriate PTE, loads it in TLB
e Must be fast (but still 20-200 cycles)
e CPU ISA has instructions for manipulating TLB
e Tables can be in any format convenient for OS (flexible)

10/31/18 CSE 120 —Paging

Managing TLBs (2)
.

e OS ensures that TLB and page tables are consistent

- When it changes the protection bits of a PTE, it needs to
invalidate the PTE if it is in the TLB

e Reload TLB on a process context switch
- Invalidate all entries
- Why? What is one way to fix it?

e \When the TLB misses and a new PTE has to be
loaded, a cached PTE must be evicted

- Choosing PTE to evict is called the TLB replacement policy

— If implemented in hardware, often simple (e.g., Last-Not-
Used)

10/31/18 CSE 120 —Paging

Bits ina TLB Entry
.

e Common (necessary) bits
— Virtual page number: match with the virtual address
- Physical page number: translated address
- Valid
— Access bits: kernel and user (nil, read, write)
e Optional (useful) bits
— Process tag
- Reference
- Modify
-~ Cacheable

10/31/18 CSE 120 —Paging

Paging Implementation Issues
-

e LB can be implemented using
- Associative registers
- Look-aside memory
- Content-addressable memory
e TLB hit ratio (Page address cache hit ratio)

- Percentage of time page found in associative
memory

10/31/18 CSE 120 —Paging

Now we are switching gear
S

e What if not all virtual memory can fit into
physical memory

—- The physical memory is small
- Too many running processes

10/31/18 CSE 120 —Paging

Demand Paging

Page Table
Memo VM Frame

10/31/18 CSE 120 —Paging

Page Table
Memo VM Frame

10/31/18 CSE 120 —Paging

Page Table
Memo VM Frame

10/31/18 CSE 120 —Paging

Paging
G

Page Table 1
VM Frame

Memo

2

3
4

emory Stoxed on Disk

1 2 3 4 5 6 7 8

10/31/18 CSE 120 —Paging

Paging
e oy

Request Page 8: Swap page 2

‘ Page Table
to disk first VM Frame |

2

3

4

d on Disk
Disk
¥/

10/31/18 CSE 120 —Paging

Paging

cal VIemory

Load Page 8 to Memo
. g Page Table 1

Memo VM Frame

10/31/18 CSE 120 —Paging

Summary
.
Paging mechanisms:
e Optimizations
- Managing page tables (space)
- Efficient translations (TLBs) (time)
- Demand paged virtual memory (space)

10/31/18 CSE 120 —Paging

