
CSE120
Principles of Operating Systems

Prof Yuanyuan (YY) Zhou
Paging

Review

l Fixed and variable size partition
– Simple to implement (base and limit registers)
– Internal vs. external fragmentation
– Best, worst, fast fit
– Bitmap vs. link-list implementation of free memory regions

l Paging
– Page size is a power of 2
– Virtual page number à physical page frame
– How to calculate VPN from virtual address?
– How to get physical address?

l Segmentation
– Segmentation table

l Hybrid: paging+segmentation
10/31/18 CSE 120 –Paging2

10/31/18 CSE 120 –Paging3

Today’s Lecture

Today we’ll cover more paging mechanisms:
l Optimizations

– Managing page tables (space)
– Efficient translations (TLBs) (time)
– Demand paged virtual memory (space)

l Recap address translation

10/31/18 CSE 120 –Paging4

Page Mapping Hardware

Contents(P,D)

Contents(F,D)

P D

F D

P-> F

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Virtual Address (P,D)

Physical Address (F,D)

P

F

D

D

P

10/31/18 CSE 120 –Paging5

Page Mapping Hardware

Contents(4006)

Contents(5006)

004 006

005 006

4-> 5

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Virtual Address (004006)

Physical Address (F,D)

004

005

006

006

4

Page size 0x1000
Number of Possible Virtual Pages 0x1000
Number of Page Frames 8

10/31/18 CSE 120 –Paging6

Paging Issues

l Page size is 2n

– usually 512, 1k, 2k, 4k, or 8k
– E.g. 32 bit VM address may have 220 (1MB) pages

with 4k (212) bytes per page
l Page table:

– 220 page entries take 222 bytes (4MB)

10/31/18 CSE 120 –Paging7

Managing Page Tables

l The page table for a 32-bit address space w/ 4K
pages to be 4MB

– This is far too much overhead for each process

l How can we reduce this overhead?
– Observation: Only need to map the portion of the address

space actually being used (tiny fraction of entire addr
space)

Question?

How to reduce page table size if the virtual
pages are sparse?

10/31/18 CSE 120 –Paging8

10/31/18 CSE 120 –Paging9

Two-Level Page Tables

l Two-level page tables

– Virtual addresses (VAs) have three parts:

l Directory, secondary page number, and offset

– Directory maps VAs to secondary page table

– Secondary page table maps page number to physical page

– Offset indicates where in physical page address is located

l Example

– 4K pages, 4 bytes/PTE

– How many bits in offset? 4K = 12 bits

– Want master page table in one page: 4K/4 bytes = 1K

entries

– Hence, 1024 secondary page tables. How many bits?

– Master (1K) = 10, offset = 12, secondary = 32 – 10 – 12 =

10 bits

10/31/18 CSE 120 –Paging10

Two-Level Page Tables

Page table

Directory 2nd-level Page No

Virtual Address

First level Page
Table

Page frame Offset

Physical Address

Physical Memory

Offset

Page frame

Second level Page Table

Youtube Video

l https://www.youtube.com/watch?v=Z4kSOv4
9GNc

10/31/18 CSE 120 –Paging11

10/31/18 CSE 120 –Paging12

So what is the problem with two-
level page table?

l Hints:
– Programs only know virtual addresses
– Each virtual address must be translated

l So, each program memory access requires several
actual memory accesses

10/31/18 CSE 120 –Paging13

Efficient Translations

l Our original page table scheme already doubled the
cost of doing memory lookups

– One lookup into the page table, another to fetch the data

l Now two-level page tables triple the cost!
– Two lookups into the page tables, a third to fetch the data
– And this assumes the page table is in memory

l How can we use paging but also have lookups cost
about the same as fetching from memory?

– Cache translations in hardware
– Translation Lookaside Buffer (TLB)
– TLB managed by Memory Management Unit (MMU)

10/31/18 CSE 120 –Paging14

Translation Look-aside Buffer
(TLB)

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

page
table

VPage#
VPage#

VPage#

10/31/18 CSE 120 –Paging15

TLBs

l Translation Lookaside Buffers

– Translate virtual page #s into PTEs (not physical addrs)

– Can be done in a single machine cycle

l TLBs implemented in hardware

– Fully associative cache (all entries looked up in parallel)

– Cache tags are virtual page numbers

– Cache values are PTEs (entries from page tables)

– With PTE + offset, can directly calculate physical address

l TLBs exploit locality

– Processes only use a handful of pages at a time

l 16-48 entries/pages (64-192K)

l Only need those pages to be “mapped”

– Hit rates are therefore very important

10/31/18 CSE 120 –Paging16

TLB Function

l If a virtual address is presented to MMU, the
hardware checks TLB by comparing all
entries simultaneously (in parallel).

l If match is valid, the page is taken from TLB
without going through page table.

l If match is not valid
– MMU detects miss and does an ordinary page

table lookup.
– It then evicts one page out of TLB and replaces it

with the new entry, so that next time that page is
found in TLB.

10/31/18 CSE 120 –Paging17

Page Mapping Hardware

P D

F D

P-> F

0
1
0
1
1
0
1

Page Table
Virtual Memory Address (P,D)

Physical Address (F,D)

P

TLB

P F
First

10/31/18 CSE 120 –Paging18

Page Mapping Example

004 006

009 006

004-> 009

0
1
0
1
1
0
1

Page Table
Virtual Memory Address (P,D)

Physical Address (F,D)

4

TLB
1 12
7
19
3

6
3
7First

Table organized by
LRU

4 9

10/31/18 CSE 120 –Paging19

Page Mapping Example: next reference

004 00a

009 00a

004-> 009

0
1
0
1
1
0
1

Page Table
Virtual Memory Address (P,D)

Physical Address (F,D)

4

TLB
1 12
4
19
3

9
3
7First

Table organized by
LRU

Youtube video

l https://www.youtube.com/watch?v=95QpHJX
55bM

10/31/18 CSE 120 –Paging20

10/31/18 CSE 120 –Paging21

Managing TLBs

l Address translations for most instructions are handled

using the TLB

– >99% of translations, but there are misses (TLB miss)…

l Who places translations into the TLB (loads the TLB)?

– Hardware (Memory Management Unit) [x86]

l Knows where page tables are in main memory

l OS maintains tables, HW accesses them directly

l Tables have to be in HW-defined format (inflexible)

– Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]

l TLB faults to the OS, OS finds appropriate PTE, loads it in TLB

l Must be fast (but still 20-200 cycles)

l CPU ISA has instructions for manipulating TLB

l Tables can be in any format convenient for OS (flexible)

10/31/18 CSE 120 –Paging22

Managing TLBs (2)

l OS ensures that TLB and page tables are consistent
– When it changes the protection bits of a PTE, it needs to

invalidate the PTE if it is in the TLB

l Reload TLB on a process context switch
– Invalidate all entries
– Why? What is one way to fix it?

l When the TLB misses and a new PTE has to be
loaded, a cached PTE must be evicted

– Choosing PTE to evict is called the TLB replacement policy
– If implemented in hardware, often simple (e.g., Last-Not-

Used)

10/31/18 CSE 120 –Paging23

Bits in a TLB Entry

l Common (necessary) bits
– Virtual page number: match with the virtual address
– Physical page number: translated address
– Valid
– Access bits: kernel and user (nil, read, write)

l Optional (useful) bits
– Process tag
– Reference
– Modify
– Cacheable

10/31/18 CSE 120 –Paging24

Paging Implementation Issues

l TLB can be implemented using
– Associative registers
– Look-aside memory
– Content-addressable memory

l TLB hit ratio (Page address cache hit ratio)
– Percentage of time page found in associative

memory

Now we are switching gear

l What if not all virtual memory can fit into
physical memory
– The physical memory is small
– Too many running processes

10/31/18 CSE 120 –Paging25

10/31/18 CSE 120 –Paging26

Demand Paging

3 1
2
3
4

Disk

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real MemoryRequest Page 3

10/31/18 CSE 120 –Paging27

Paging

3 1
1 2

3
4

Disk

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real MemoryRequest Page 1

10/31/18 CSE 120 –Paging28

Paging

3 1
1
6

2
3
4

Disk

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real MemoryRequest Page 6

10/31/18 CSE 120 –Paging29

Paging

3 1
1
6

2
3
4

Disk

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real MemoryRequest Page 2

2

10/31/18 CSE 120 –Paging30

Paging

3 1
1
6

2
3
4

Disk

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory

2

Request Page 8: Swap page 2
to disk first

10/31/18 CSE 120 –Paging31

Paging

3 1

6
2
3
4

Disk

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory

2

Load Page 8 to Memory

8

10/31/18 CSE 120 –Paging32

Summary

Paging mechanisms:

l Optimizations
– Managing page tables (space)
– Efficient translations (TLBs) (time)
– Demand paged virtual memory (space)

